skip to main content


Search for: All records

Creators/Authors contains: "Arabi Shamsabadi, Ahmad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gas separation membranes incorporating two-dimensional (2D) materials have received considerable attention in recent years, as these membranes have shown outstanding physical, structural, and thermal properties and high permeability- selectivity. The reduced thickness and diversity of the gas transport mechanisms through in-plane pores (intrinsic defects), in-plane slitlike pores, or plane-to-plane interlayer galleries provide the membranes with a significant sieving ability for energy-efficient gas separation. The discovery of 2D transition metal carbides/nitrides materials, MXenes, has provided new opportunities in the gas separation membrane area because of their hydrophilicity, rich chemistry, high flexibility, and mechanical strength. This Review puts into perspective recent advances in 2D-material-based gas separation membranes. It discusses research opportunities mainly in MXene-based gas membranes, highlights modification approaches for tuning the in-plane and plane-to-plane nanoslits, explains governing mechanisms of transport through these membranes, and compares their advantages and disadvantages with those of other 2D materials. It also discusses current challenges and provides prospects in this area. 
    more » « less
  2. null (Ed.)
  3. When aged below the glass transition temperature,Tg, the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid–liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films ofN,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid–liquid phase transition temperature (TLL) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.

     
    more » « less
  4. Many widely-used polymers are made via free-radical polymerization. Mathematical models of polymerization reactors have many applications such as reactor design, operation, and intensification. The method of moments has been utilized extensively for many decades to derive rate equations needed to predict polymer bulk properties. In this article, for a comprehensive list consisting of more than 40 different reactions that are most likely to occur in high-temperature free-radical homopolymerization, moment rate equations are derived methodically. Three types of radicals—secondary radicals, tertiary radicals formed through backbiting reactions, and tertiary radicals produced by intermolecular chain transfer to polymer reactions—are accounted for. The former tertiary radicals generate short-chain branches, while the latter ones produce long-chain branches. In addition, two types of dead polymer chains, saturated and unsaturated, are considered. Using a step-by-step approach based on the method of moments, this article guides the reader to determine the contributions of each reaction to the production or consumption of each species as well as to the zeroth, first and second moments of chain-length distributions of live and dead polymer chains, in order to derive the overall rate equation for each species, and to derive the rate equations for the leading moments of different chain-length distributions. The closure problems that arise are addressed by assuming chain-length distribution models. As a case study, β-scission and backbiting rate coefficients of methyl acrylate are estimated using the model, and the model is then applied to batch spontaneous thermal polymerization to predict polymer average molecular weights and monomer conversion. These predictions are compared with experimental measurements. 
    more » « less
  5. Abstract

    Water pollution is a major global challenge, as conventional polymeric membranes are not adequate for water treatment anymore. Among emerging materials for water treatment, composite membranes are promising, as they have simultaneously improved water permeation and ions rejection. Recently, a new family of 2D materials called MXenes has attracted considerable attention due to their appealing properties and wide applications. MXenes can be incorporated into many polymeric materials due to their high compatibility. MXenes/polymer composite membranes have been found to have appealing electrical, thermal, mechanical, and transport properties, because of strong interactions between polymer chains and surface functional groups of MXenes and the selective nanochannels that are created. This article reviews advances made in the area of ion‐selective MXene‐based membranes for water purification. It puts the advances into perspective and provides prospects. MXenes’ properties and synthesis methods are briefly described. Strategies for the preparation of MXene‐based membranes including mixed‐matrix membranes, thin‐film nanocomposite membranes, and laminated membranes are reviewed. Recent advances in ion‐separation and water‐desalination MXene‐based membranes are elucidated. The dependence of ion‐separation performance of the membranes on fabrication techniques, MXene's interlayer spacing, and MXene's various surface terminations are elucidated. Finally, opportunities and challenges in ion‐selective MXene‐based membranes are discussed.

     
    more » « less
  6. Abstract

    The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic‐resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes’ unique combination of properties, including multifarious elemental compositions, 2D‐layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.

     
    more » « less